

PXT-QSFP+LR4-10

Особенности

- Соответствует отраслевому стандарту SFF-8436 QSFP+ Transceiver Specification
- Скорость передачи данных до 11,2 Гбит/с на длину волны.
- 4 полосы CWDM MUX/DEMUX
- До 10 км передачи по одномодовому волокну (SMF)
- Очень низкий уровень электромагнитных помех и отличная защита от электростатического разряда
- Максимальная потребляемая мощность 3,5 Вт
- Дуплексный разъем LC
- Рабочая температура: 0~+70°C

Применение

- Высокоскоростные сети хранения данных
- Кросс-коннект компьютерного кластера
- Пользовательские высокоскоростные каналы передачи данных

Соответствие

- IEEE802.3ba 40GBASE-LR4
- Спецификация SFF-8436 QSFP
- Спецификации архитектуры InfiniBand QDR

Описание

Трансивер PXT-QSFP+LR4-10 - это высокопроизводительный и экономичный модуль для приложений последовательной оптической передачи данных со скоростью до 41,5 Гбит/с. PXT-QSFP+LR4-10 разработан в соответствии с 40GBASE-LR4 стандарта IEEE P802.3ba для линий связи на 10 км.

Модуль преобразует 4 входных канала (ch) электрических данных 10 Гбит/с в 4 оптических сигнала СWDM и мультиплексирует их в один канал для оптической передачи 40 Гбит/с. В обратном направлении, на стороне приемника, модуль оптически де-мультиплексирует входной сигнал 40 Гбит/с в 4 канала СWDM и преобразует их в 4 канала выходных электрических данных.

Центральные длины волн 4 каналов CWDM - 1271, 1291, 1311 и 1331 нм, как члены сетки длин волн CWDM, определенной в ITU-T G.694.2. Он содержит дуплексный разъем LC для оптического интерфейса и 38-контактный разъем для электрического интерфейса. Чтобы минимизировать оптическую дисперсию в системе дальней связи, в этом модуле должно применяться одномодовое волокно (SMF).

Спецификация

Цифровые диагностические функции

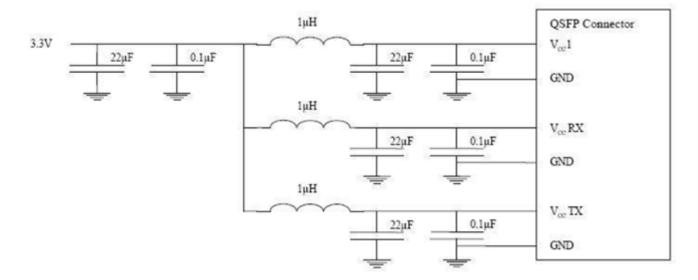
Параметры	Обозначения	Мин.	Макс.	Ед. Изм.	Примечание
Абсолютная погрешность контроля температуры	DMI_Temp	-3	3	${\mathbb C}$	Превышение рабочей температуры
Абсолютная погрешность контроля мощности передатчика	DMI_TX	-3	3	dB	
Абсолютная ошибка монитора мощности RX	DMI_RX	-3	3	dB	
Абсолютная погрешность контроля напряжения питания	DMI_VCC	-3%	+-3%	V	
Абсолютная погрешность контроля тока смещения	DMI_Ibias	-10%	10%	mA	

Примечание: [1] Неконденсирующееся состояние.

Рекомендуемые условия эксплуатации

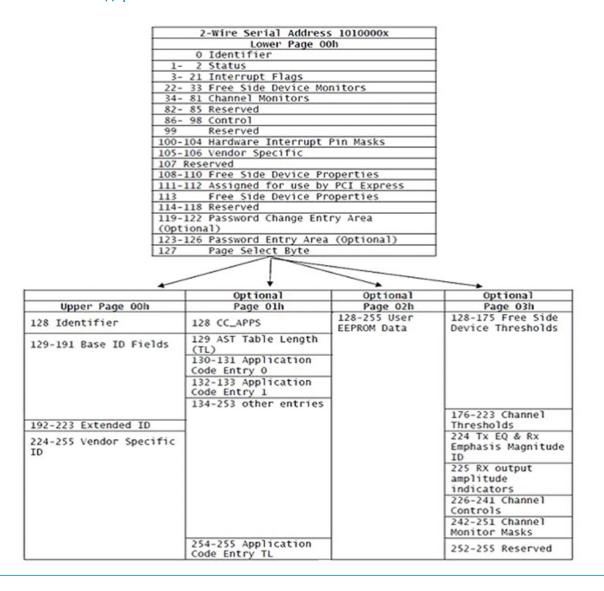
Параметры	Обозначения	Мин.	Типичное	Макс.	Ед. Изм.
Рабочая температура корпуса	T _C	0	+25	+70	°C
Напряжение питания	Vcc3	3.13	3.3	3.47	V
Скорость передачи	BR	9.9	-	11,2	Gb/s
Высокий уровень входного напряжение	Vih	2	-	Vcc+0.3	V
Дальность передачи	TD	-	-	10	km
Высокий уровень входного напряжение	Vil	-0.3	-	0.8	V
Рассеиваемая мощность	PD	-	-	3.5	W

Оптические и электрические характеристики


Параметры	Обозначения	Мин.	Типичное	Макс.	Ед. Изм.	Примечание
Длина волны λ0	λ0	1264.5	1271	1277.5	nm	
Длина волны λ1	λ1	1284.5	1291	1297.5	nm	
Длина волны λ2	λ2	1304.5	1311	1317.5	nm	
Длина волны λ3	λ3	1324.5	1331	1337.5	nm	
Коэффициент подавления боковых мод	SMSR	30	-	-	dB	
Спектральная ширина	SW	-	-	1.0	nm	
Средняя мощность, каждая полоса (EOL)	TXP	-7	-	3	dBm	
Коэффициент экстинкции	ER	3.5	_	-	dB	
Амплитуда оптической модуляции	OMA	-4	-	3.5	dBm	

Цифровые диагностические функции

Параметры	Обозначения	Мин.	Типичное	Макс.	Ед. Изм.
Абсолютная погрешность контроля температуры	DMI_Temp	-5	-	+5	$^{\circ}$
Абсолютная погрешность контроля напряжения питания	DMI_VCC	-5%	-	+5%	V
Абсолютная ошибка монитора мощности RX	DMI_RX	-3	-	+3	dB
Абсолютная погрешность контроля тока смещения	DMI_lbias	-10%	-	+10%	mA
Абсолютная погрешность контроля мощности передатчика	DMI_Tx	-3	-	+3	dB



Фильтрация источника питания платы хоста

EEPROM Serial ID Содержание памяти

